首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1053篇
  免费   118篇
  2023年   3篇
  2022年   5篇
  2021年   31篇
  2020年   11篇
  2019年   15篇
  2018年   23篇
  2017年   23篇
  2016年   29篇
  2015年   55篇
  2014年   65篇
  2013年   89篇
  2012年   73篇
  2011年   77篇
  2010年   56篇
  2009年   49篇
  2008年   63篇
  2007年   75篇
  2006年   68篇
  2005年   48篇
  2004年   36篇
  2003年   40篇
  2002年   39篇
  2001年   14篇
  2000年   13篇
  1999年   12篇
  1998年   12篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1992年   13篇
  1991年   7篇
  1990年   10篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1985年   3篇
  1983年   5篇
  1982年   4篇
  1981年   10篇
  1980年   7篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有1171条查询结果,搜索用时 500 毫秒
61.
Selenocysteine is incorporated into selenoproteins by an in-frame UGA codon whose readthrough requires the selenocysteine insertion sequence (SECIS), a conserved hairpin in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. To identify new selenoproteins, we developed a strategy that obviates the need for prior amino acid sequence information. A computational screen was used to scan nucleotide sequence data bases for sequences presenting a potential SECIS secondary structure. The computer-selected hairpins were then assayed in vivo for their functional capacities, and the cDNAs corresponding to the SECIS winners were identified. Four of them encoded novel selenoproteins as confirmed by in vivo experiments. Among these, SelZf1 and SelZf2 share a common domain with mitochondrial thioredoxin reductase-2. The three proteins, however, possess distinct N-terminal domains. We found that another protein, SelX, displays sequence similarity to a protein involved in bacterial pilus formation. For the first time, four novel selenoproteins were discovered based on a computational screen for the RNA hairpin directing selenocysteine incorporation.  相似文献   
62.
The previously reported analog of pregnenolone having a 3,4-dihydro-2H-pyran attached via a Cz.sbnd;C bond to the C-20 position (1), stereoselectively reacts with m-chloroperoxybenzoic acid in methanol at -5 degrees C. Acid-catalyzed hydrolysis of the isolated intermediates gives good yields of mostly a new 27-norcholesterol analog: (20R,23R)-3,20,23,26-tetrahydroxy-27-norcholest-5-en-22-one-3-acetate (2a, and a smaller amount of its 23S enantiomer 2b). Three different conditions of epoxidation and methanolysis followed by acid-catalyzed hydrolysis typically produce approximately 2:1 ratios of the 23R:23S diastereoisomers with a C-23 hydroxy group at the new asymmetric center. Bromine also reacts stereoselectively with (20R)-3,20-dihydroxy-(3',4'-dihydro-2'H-pyranyl)-5-pregnene (4) giving mostly (20R,23R)-23-bromo-3,20,26-trihydroxy-27-norcholest-5-en-22-one (7a). Thus both major steroidal products 2a and 7a have the same C-23R configuration. Assignment of molecular structures and the absolute configurations to 1 and 2a were based on elemental analysis, mass spectra, nuclear magnetic resonance, FTIR infrared spectroscopic analysis and X-ray crystallography. Mechanisms are discussed for stereochemical selectivity during epoxidation and bromination of the 3,4-dihydro-2H-pyranyl ring in 1 and 4.  相似文献   
63.
Krol J  Krzyzosiak WJ 《IUBMB life》2004,56(2):95-100
One of the biggest surprises at the beginning of the 'post-genome era' was the discovery of numerous genes encoding microRNAs. They were found in genomes of such diverse organisms as Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens which implies their important role in multicellular life evolution. The number of microRNA genes is estimated to be nearly 1% of that of protein-coding genes. Their products, tiny RNAs, are thought to regulate gene expression during development, organogenesis, and very likely during many other processes, by hybridizing to their target mRNAs. The cellular functions of mRNAs that are regulated by microRNAs are only beginning to be revealed, and details of this regulation mechanism are still poorly understood. In this article we discuss the possible mechanisms of microRNA biogenesis with special emphasis on their structural aspects. We have focused on the factors and effects that may be responsible for the existing length differences between different microRNAs, and for the observed length heterogeneity within some individual microRNA species.  相似文献   
64.
Hepatic stellate cells are the primary cell type responsible for matrix deposition in liver fibrosis, undergoing a process of transdifferentiation into fibrogenic myofibroblasts. These cells, which undergo a similar transdifferentiation process when cultured in vitro, are a major target of the profibrogenic agent transforming growth factor-beta (TGF-beta). We have studied activation of the TGF-beta downstream signaling molecules Smads 2, 3, and 4 in hepatic stellate cells (HSC) cultured in vitro for 1, 4, and 7 days, with quiescent, intermediate, and fully transdifferentiated phenotypes, respectively. Total levels of Smad4, common to multiple TGF-beta superfamily signaling pathways, do not change as HSC transdifferentiate, and the protein is found in both nucleus and cytoplasm, independent of treatment with TGF-beta or the nuclear export inhibitor leptomycin B. TGF-beta mediates activation of Smad2 primarily in early cultured cells and that of Smad3 primarily in transdifferentiated cells. The linker protein SARA, which is required for Smad2 signaling, disappears with transdifferentiation. Additionally, day 7 cells demonstrate constitutive phosphorylation and nuclear localization of Smad 2, which is not affected by pretreatment with TGF-beta-neutralizing antibodies, a type I TGF-beta receptor kinase inhibitor, or activin-neutralizing antibodies. These results demonstrate essential differences between TGF-beta-mediated signaling pathways in quiescent and in vitro transdifferentiated hepatic stellate cells.  相似文献   
65.
66.
The last ten years have seen a dramatic increase in our understanding of the molecular mechanism allowing specific incorporation of selenocysteine into selenoproteins. Whether in prokaryotes or eukaryotes, this incorporation requires several gene products, among which the specialized elongation factor SelB and the tRNA(Sec) play a pivotal role. While the molecular actors have been discovered and their role elucidated in the eubacterial machinery, recent data from our and other laboratories pointed to a higher degree of complexity in archaea and eukaryotes. These findings also revealed that more needs to be discovered in this area. This review will focus on phylogenetic aspects of the SelB proteins. In particular, we will discuss the concerted evolution that occurred within the SelB/tRNA(Sec) couples, and also the distinctive roles carried out by the SelB C-terminal domains in eubacteria on the one side, and archaea and eukaryotes, on the other.  相似文献   
67.
68.
Importin-alpha proteins do not only mediate the nuclear import of karyophilic proteins but also regulate spindle assembly during mitosis and the assembly of ring canals during Drosophila oogenesis. Three importin-alpha genes are present in the genome of Drosophila. To gain further insights into their function we analysed their expression during spermatogenesis by using antibodies raised against each of the three Importin-alpha proteins identified in Drosophila, namely, Imp-alpha1, -alpha2, and -alpha3. We found that each Imp-alpha is expressed during a specific and limited period of spermatogenesis. Strong expression of Imp-alpha2 takes place in spermatogonial cells, persists in spermatocytes, and lasts up to the completion of meiosis. In growing spermatocytes, the intracellular localisation of Imp-alpha2 appears to be dependent upon the rate of cell growth. In pupal testes Imp-alpha2 is essentially present in the spermatocyte nucleus but is localised in the cytoplasm of spermatocytes from adult testes. Both Imp-alpha1 and -alpha3 expression initiates at the beginning of meiosis and ends during spermatid differentiation. Imp-alpha1 expression extends up to the onset of the elongation phase, whereas that of Imp-alpha3 persists up to the completion of nuclear condensation when the spermatids become individualised. During meiosis Imp-alpha1 and -alpha3 are dispersed in the karyoplasm where they are partially associated with the nuclear spindle, albeit not with the asters. At telophase they aggregate around the chromatin. During sperm head differentiation, both Imp-alpha1 and -alpha3 are nuclear. These data indicate that each Imp-alpha protein carries during Drosophila spermatogenesis distinct, albeit overlapping, functions that may involve nuclear import of proteins, microtubule organisation, and other yet unknown processes.  相似文献   
69.
Mice have proved to be powerful models for understanding obesity in humans and farm animals. Single-gene mutants and genetically modified mice have been used successfully to discover genes and pathways that can regulate body weight. For polygenic obesity, the most common pattern of inheritance, many quantitative trait loci (QTLs) have been mapped in crosses between selected and inbred mouse lines. Most QTL effects are additive, and diet, age and gender modify the genetic effects. Congenic, recombinant inbred, advanced intercross, and chromosome substitution strains are needed to map QTLs finely, to identify the genes underlying the traits, and to examine interactions between them.  相似文献   
70.
Selenium was incorporated into an oligodeoxynucleotide in the form of 2'-methylseleno-uridine (U(Se)). The X-ray crystal structure of the duplex left open bracket d(GCGTA)U(Se)d(ACGC) right open bracket (2) was determined by the multiwavelength anomalous dispersion (MAD) technique and refined to a resolution of 1.3 A, demonstrating that selenium can selectively substitute oxygen in DNA and that the resulting compounds are chemically stable. Since derivatization at the 2'-alpha-position with selenium does not affect the preference of the sugar for the C3'-endo conformation, this strategy is suitable for incorporating selenium into RNA. The availability of selenium-containing nucleic acids for crystallographic phasing offers an attractive alternative to the commonly used halogenated pyrimidines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号